Robust Storage Systems Design

Marc Goetschalckx

marc.goetschalckx@isye.gatech.edu

ISERC 2014 Montreal, Canada

1

Warehouse Operations Flow Path Schematic (FFN)

Research Goal

Design framework for storage systems

Unit loads

- Single and dual command
- Direct access
	- Single-deep rack and single-load high floor stacks
- Comprehensive
	- Rich set of facility configurations and storage policies
- Robust: efficiency and risk (stochastic)
- Component of design methodology for **warehousing systems**
Georgialnstitute

echmologiv

Sainsbury's Grocery Distribution Center

Empty Single-Deep Pallet Rack with Four Levels

ASRS Pallet Unit Load High-Rise Storage

The H. Milton Stewart School of Industrial and Systems Engineering

Wine Barrels in a Cantilever Rack

11

The H. Milton Stewart School of Industrial and Systems Engineering

Definitions

Example Policy

 \checkmark Set of rules that determine where to store arriving SKUs in a warehousing system

Unit Load

- \checkmark A collection of materials that can be transported, stored, and controlled (managed) as a single unit
	- Examples
	- Vast majority of discrete goods

Warehousing Storage Objectives: Back to Basics

- **Minimize the cost of expected travel time for given input-output operations** Minimize MH equipment and personnel Variable (marginal) costs
- **Minimize the cost of required storage space for given stored inventory**

 \checkmark Minimize capital investment

 $\sqrt{\frac{F}{2}}$ Fixed costs

Main Design Observation

- **Very few configuration decisions**
- **Most compared with complete enumeration (user driven comparison)**
	- Technology, type of material handling equipment, aisles have ladder structure or not, aisle orientation, location of the input/output points, storage policy
	- \checkmark Many combinations
		- Need computational support to evaluate designs quickly

Design Decision Variables

Main design decision variables

 \checkmark Number of aisles, number of levels (rack height), number of columns (aisle length)

Execondary decisions

- Load locations, number of personnel and MH equipment
- **Decomposition**
- **Pareto optimal comparison of efficiency versus risk**

Pareto Risk versus Efficiency Comparison

The H. Milton Stewart School of Industrial and Systems Engineering

22

Prior Research on Storage Systems Design and Storage Policies

Long research history and still active area

- \checkmark Heskett (COI) 1963,...to Ang et al. 2012
- $\sqrt{2}$ Most recent reviews Gu et al. 2007 + 2010
- Contemporary blogs
- \checkmark Industry norms FEM, VDI

Results and algorithms are strongly assumption driven

\checkmark Integration and unified assumptions are the challenge

Storage Policies Classification

The H. Milton Stewart School of Industrial and Systems Engineering

Storage Policy Classification: Additional Considerations

Stationary or not warehousing operations

\checkmark Repetitive, seasonal, build-up (single use), random events

Decomposition Algorithm

One user-specified design

E.g. ASRS, random storage

Master problem: determine NA, NL, NC

Sub problem:

 \checkmark Split by scenario

- Compute assignment costs (parameters)
- \checkmark Optimize scenario variables and (objective) cost
- $\sqrt{\sqrt{R}}$ Return EV and SD of scenario costs

Two Examples

General load-based assignment (VAP)

 \checkmark Most general, very large MIPs, most computationally demanding

Ultimate verification algorithm

Technology comparison with random storage

Using FEM travel time norms

Different risk measures

Occupancy Gantt Chart: Rack Based Direct Access

VAP Conclusions

- **Very large integer optimization problem**
- **Very tight LP relaxation**
- **Efficient sub problem and problem size indicate decomposition**
- **Very small gap for Lagrangean relaxation upper bound**
- **Highly primal and dual degenerate**
- **Acceptable penalty for primal heuristic**

Technology Comparison Example

- **Automated storage and retrieval system (ASRS) versus person-controlled narrow aisle reach truck (NAT)**
- **System and construction, operations, and maintenance costs**
- **ASRS**

Simultaneous travel, aisle-captive crane

NAT

V Sequential travel in the aisle, non aisle-captive Georgialnetitute echmology Milton Stewart School of Industrial and Systems Engineering

Technology Comparison Example

Model characteristics

 \checkmark Cubic space constraint (master), volume and area cost terms (sub) become parameters, quadratic sub objective (risk = variance), efficiency versus risk tradeoff weight

Algorithm

 \checkmark Finite ranges for NA, NL, NC

Solved by complete enumeration in master

Technology Comparison Example: Standard Deviation Risk

47

Technology Comparison Example: Downside Risk (Semi-Deviation)

The H. Milton Stewart School of Industrial and Systems Engineering

Unit Load Storage Policy Conclusions

- **Unit load systems are very common**
- **Single or dual command cycles**
- **Two main objectives:**
	- Cost of storage space,
	- Cost of total travel time

Three planning problems

- Strategic configuration and sizing
- Tactical storage policy
- Operational storage & retrieval sequence **Georgia**lnstitute

echmology

Unit Load Storage Policy Conclusions Continued

- **Operator-controlled systems are less expensive, but have larger cost variability**
- **Above is true regardless of the risk measure (standard deviation or downside risk)**
- **On an equal low-risk basis automated systems are less expensive**

May I answer any questions?

